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Oscillatory zoning, i.e., self-formation of spatial quasiperiodic oscillations in the composition of solid
growing from aqueous solution, is analyzed theoretically. Keeping in mind systems like �Ba,Sr�SO4, we
propose a one-dimensional model that takes into account the nonideality of the solid solution and the system
asymmetry, in particular, reflecting itself in different solubilities for such systems. Based on a linear stability
analysis, different parameter regions can be identified. Even an ideal solution with a sufficiently large asym-
metry can display oscillatory zoning. Numerical simulations complement the linear stability analysis as well as
the qualitative consideration of the instability development and reveal the nature of the limit cycles.
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I. INTRODUCTION

Spatial patterns reflected by quasiperiodic variations of
the solid composition from the core of crystals to their rim
are widely met in natural minerals �see, e.g., Ref. �1��. This
phenomenon is called oscillatory zoning �OZ�. The appear-
ance of such patterns was traditionally related to cyclic
changes in surroundings during crystal formation in rocks.
However, the success of reproducing OZ in calcite crystals
�2� and �Ba,Sr�SO4 solid solutions �3–5� in laboratory under
quasistationary conditions has demonstrated that OZ can at
least partly result from self-organization during crystal
growth in solution.

The experimental setup used by Putnis and co-workers
�3–5� is sketched in Fig. 1. It consists of two reservoirs, one
filled with an aqueous solution of BaCl2 /SrCl2 and the other
with Na2SO4. The two reservoirs are connected by a column
filled with silica gel to inhibit convective transport. At the
beginning of the experiments the reactants start to diffuse
toward each other through the column. As the diffusion fields
of Ba2+, Sr2+, and SO4

2− overlap and the solute concentration
product exceeds the nucleation threshold in the vicinity of
the column center, the crystal nuclei form. In approximately
one month the experiments were terminated. The obtained
crystals exhibited OZ although no external fluctuations were
imposed on the system.

Following the spirit of the general model by Ortoleva
�6,7� for the growth instability caused by autocatalytic inter-
action of the species at the crystal surface L’Heureux et al.
�8–10� proposed a rather sophisticated model for OZ in the
�Ba,Sr�SO4 solid growing from aqueous solution. The de-
tailed analysis of these models was carried out within the
boundary layer approximation.

In a previous paper �11� we have demonstrated that OZ in
crystals growing from solution can be described as a

boundary-reaction-diffusion problem. It is characterized by
passive diffusion of species through the solution bulk to the
crystal surface where their interaction gives rise to the crystal
growth. The latter, however, proceeds with a very low rate so
that the crystal boundary can be treated as a surface fixed in
space. In that work we have mainly studied the presence of
the instability with respect to the nonideality parameter �. It
turned out that for sufficiently large �, i.e., ���c0 the insta-
bility and thus OZ can indeed be observed.

Experimentally, however, it is observed that in particular
solid solutions with very different solubility products of the
end members display OZ �such as �Ba,Sr�SO4� whereas sys-
tems with similar solubility products �such as �Ba,Sr�CO3�
do not display OZ �12�. For example, for the first case the
solubility product of both end members differs by three or-
ders of magnitude �see, e.g., �13��. The solubility product is
related to the system asymmetry �. Thus the question
emerges whether the model also allows OZ for systems with
a pronounced asymmetry rather than a significant nonideal-
ity.
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FIG. 1. Experimental setup in which oscillatory zoned crystals
of �Ba,Sr�SO4 were synthesized by Putnis and co-workers �3–5�.
The reactants counterdiffuse in the column and �Ba,Sr�SO4 crystals
nucleate. The upper window sketches the structure of the nucleation
zone and the length scales involved.

PHYSICAL REVIEW E 78, 041606 �2008�

1539-3755/2008/78�4�/041606�16� ©2008 The American Physical Society041606-1

http://dx.doi.org/10.1103/PhysRevE.78.041606


The purpose of this work is fourfold. First, we rederive
our model in a somewhat extended way which allows one to
better understand the microscopic origin of the different pa-
rameters. The definitions have been chosen such that the final
model equations are identical to the model studied in our
previous work �11�. Second, after deriving the somewhat
complex instability conditions from the linear stability analy-
sis we argue on a semiquantitative level that indeed the
model possesses an additional instability channel for suffi-
ciently large values of the system asymmetry and thus obtain
a semiquantitative phase diagram of the instability region.
Third, via a careful mathematical analysis, we somewhat
modify this picture, yielding some surprising features in the
newly analyzed instability regime. Fourth, via numerical
simulations we illustrate the behavior beyond the linear re-
gime.

II. MODEL

A. Energetics of crystal growth

We take into account the following mechanism of crystal
growth having in mind the �Ba,Sr�SO4. The ions SO4

2− �be-
low species of type 0�, Ba2+ �species 1�, and Sr2+ �species 2�
diffuse to the crystal surface through the aqueous solution,
where they are adsorbed and display surface diffusion. If
they reach the atomic steps they are incorporated into the
crystalline lattice via the following precipitation reactions:

Ba2+ + SO4
2− → BaSO4 �channel 0-1� , �1a�

Sr2+ + SO4
2− → SrSO4 �channel 0-2� . �1b�

The latter process is considered to be irreversible, i.e., the
solid dissolution is ignored, which means that the system is
far from thermal equilibrium and the growth rate cannot take
too low values in the case under consideration. Finally, they
are forming a new layer of the crystal.

Migrating along the crystal surface adatoms experience
many different local environments depending on the surface
composition which will be characterized by the mole fraction
� of species 1 �0���1�. The competition between adsorp-
tion and desorption is determined by the effective adsorption
energies Ei��� �i=0,1 ,2� reflecting the species interaction
with the crystal surface and aqueous solvent. In the mean
field approximation they are written as

E0��� = �0 − g1� − g2�1 − �� , �2a�

E1��� = �1 − g1 + ��1 − �� , �2b�

E2��� = �2 − g2 + �� , �2c�

where all the energy quantities are measured in units of tem-
perature. Here �i is the solvation energy of species i, the
constant gi characterizes the interaction between adatoms of
type i=1,2 with atoms of type 0 lying in the surface atomic
layer of the crystal lattice, and the parameter ��0 quantifies
the solid solution nonideality. This expresses the fact that the
strongest interaction on the crystal surface holds between
like ions.

In these terms equilibrium between the adsorbed layer and
the aqueous solution region adjacent to the crystal surface
implies the following relation between the adatom concen-
trations ci and the concentration Ci

s of the corresponding spe-
cies near the crystal surface:

ci = aCi
se−Ei���, �3�

where a is the characteristic size of the crystalline cell.
In principle, on vicinal crystal surfaces the adatoms

should have some solvent shells and for them to be incorpo-
rated into the crystal lattice these shells have to be destroyed.
If it is essential then the precipitation reactions �1� at the
surface atomic steps limit the crystal growth and it can be
assumed that the absorbed layer is in quasiequilibrium as
expressed by Eq. �3�. In this case the partial rates 	1 and 	2
of the crystal growth through channels �1a� and �1b�, i.e., the
individual contributions of these channels to the interface
velocity of the growing crystal are given by the expression

	i = 
i
a6

l
c0ci, �4�

where 
i is the frequency at which the pair of the Ba2+,
SO4

2− adatoms or the Sr2+, SO4
2− adatoms meeting at the

surface steps are incorporated in the crystal lattice and l is
the mean distance between these steps.

Combining expressions �3� and �4� we get the desired
relationship between the partial growth rates via the channels
0-1, 0-2, and the corresponding values of the solute concen-
trations C0

s , C1
s , and C2

s near the crystal surface,

	1 =��
1


2
�1/2

e−�1/2��e��−��1−��C0
sC1

s , �5a�

	2 =��
2


1
�1/2

e�1/2��e−��1−��−��C0
sC2

s . �5b�

Here we have introduced the kinetic coefficient

� = �
1
2
a8

l
e2g12−�0−�12 �6�

and rewritten the interaction constants g1,2, �1,2 using com-
bination of the quantities

g12 =
1

2
�g1 + g2�, � = g1 − g2, �7�

�12 =
1

2
��1 + �2�, � = �1 − �2 �8�

to emphasize the different properties of species 1 and 2.
Expressions �5� are actually the main result of this sub-

section and form the basis of the model for the crystal
growth to be constructed in the next section. It is rather simi-
lar to the model we have developed previously �11�, enabling
us to sketch out the principle aspects only. Below we will
assume the inequality ��0 to hold beforehand because, oth-
erwise, the indices could just be exchanged.
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B. Model equations

In the aqueous solution the SO4
2− ions are assumed to be

abundant. Thus we can regard their concentration as a fixed
value C0. In this case the crystal growth in the one-
dimensional �1D� description is governed by the boundary-
reaction-diffusion model developed in our previous work
�11�. Namely, diffusion of the components i=1,2 through the
solution is considered within the region z� �0,L� and is de-
scribed by the equation

�Ci�z,t�
�t

= Di
�2Ci�z,t�

�z2 , �9�

where Di is the diffusivity of the species i in the aqueous
solution and the system size L should be chosen large
enough in order to enable us to fix the influx of both the
components at the external boundary z=L

Gi = Di� �Ci�z,t�
�z

�
z=L

. �10�

Then having in mind expressions �5� we write the following
boundary condition at the crystal surface �z=0�:

Di� �Ci�z,t�
�z

�
z=0

=
aCi

s

i���
�11�

which relates the boundary values of diffusion flux and the
rates of species attachment to the crystal surface,

ri ª
aCi

s

i���
, �12�

caused by the growth process. Here the time scales of the
crystal growth dynamics via the channels 0-1 and 0-2 indi-
vidually are specified as

1��� = g�
2


1
�1/2

e�1/2��−��+��1−��, �13a�

2��� = g�
1


2
�1/2

e−�1/2��+��1−��+��, �13b�

where the time scale of the crystal growth dynamics as a
whole process is

g =
a4

�C0
. �14�

Finally, the solid composition is governed by the equation

d�

dt
= a2��1 − ��

aC1
s

1���
− �

aC2
s

2���
� �15�

following from mass conservation and used previously in a
number of papers on OZ; see, e.g., Refs. �8–11�.

The given system admits only one steady state solution,

C1�z� = C1,st
s + �st

G

D1
z ,

C2�z� = C2,st
s + �1 − �st�

G

D2
z , �16a�

where G=G1+G2 is the total diffusion flux determining the
growth rate of the crystal as a whole, the corresponding
value of the crystal composition �st=G1 /G, so

G1 = �stG, G2 = �1 − �st�G , �16b�

and by virtue of Eq. �11� the boundary values of the species
concentrations are

C1,st
s =

1��st�
a
�stG ,

C2,st
s =

2��st�
a

�1 − �st�G . �16c�

It should be noted that this model contains as variables the
solid state composition � and two boundary values of the
species concentrations C1

s , C2
s . So the system instability can

be described using the classical notions of relaxation oscilla-
tions in a two-dimensional phase plane. This, however, is
only a rough approximation, as it has been already shown in
our previous paper �11�.

III. THE INSTABILITY DOMAIN

A. The eigenvalue problem

Now let us analyze in a rigorous way the linear stability
of the system around the steady state described by expres-
sions �16a�–�16c�. For this purpose the dynamics of small
perturbations

�Ci�t,z� � exp	�t − piz
, ���t� � exp	�t
 �17�

in the species distribution and the composition of the crystal
surface is considered. Here � is the instability increment and
the parameters 	pi
 such that Re pi�0 characterize localiza-
tion of the perturbations �Ci�t ,z� near the crystal surface.
Then the governing equations �9�–�11� and �15� are linear-
ized with respect to perturbations �17� in the vicinity of the
stationary solution �16a�–�16c�. The system of algebraic
equations obtained in this way gives us the eigenvalue equa-
tion for the instability increment �. This procedure is practi-
cally identical to that from Ref. �11�. So here we skip the
corresponding mathematical manipulations and write directly
the desired eigenvalue equation in the final form,

�2

g
ei2� = − 1 + ��1 − ����� + ��

����ei�

����ei� + 1

+ �� − ��
��/��ei�

��/��ei� + 1
� , �18�

where following the notations of paper �11� we have intro-
duced the variable ��0, the angle �� �−� /2,� /2�, and the
parameter ��0 given by the expression
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�2 =�D1

D2

1���
2���

= ��
2 exp	��1 − 2��


with ��
2 =�D1

D2


2


1
exp	� − �
 �19�

such that

� =
a2

�D1D21���2���
�2ei2�, �20�

and

p1 =
a

D11���
��ei�, p2 =

a

D22���
1

�
�ei�. �21�

The quantity g stands for the dimensionless diffusion flux of
species through the aqueous solution bulk towards the crystal
surface,

g = �D1D21���2���G = �D1D2g
2 exp	��1 − 2�� + �
G .

�22�

To find the boundary of the instability region in the space
of system parameters we note that the eigenvalue equation
�18� can be directly reduced to a fourth-order polynomial
equation by multiplying it by both the denominators entering
its right-hand side. The coefficient of the highest power term
of this polynomial is a constant value. So the roots of Eq.
�18� cannot go to infinity and thus vary continuously as the
system parameters change. The instability boundary sepa-
rates the regions where the value of Re � has different signs
and therefore meets the equality

Re � = 0.

Due to Eq. �20� this converts into the condition �=�� /4.
Taking the latter into account and splitting Eq. �18� into the
real and imaginary parts we immediately get the conclusion
that at the instability boundary the parameter � obeys the
following equation:

�� + ���1���� + �� − ���1� �
�
� = 2�c �23�

and the diffusion flux takes the value

gc = �2�c�c��� + ����2��c�� + �� − ��
1

�
�2� �c

�
��−1

,

�24�

where �c is the solution of Eq. �23� and the functions

�1�x� =
�2x��2x + 1�
��2x + 1�2 + 1

, �2�x� =
1

��2x + 1�2 + 1
�25�

as well as the critical value of the nonideality parameter de-
pending on the crystal composition �,

�c��� =
1

2��1 − ��
, �26�

have been introduced. In other words, at the instability
boundary the general eigenvalue equation �18� is reduced to

Eq. �23� and if its solution �c exists then formula �24� speci-
fies the critical value of the species diffusion flux gc. Only
one additional condition should be imposed; it is the require-
ment that the obtained value of gc be positive.

Below we will confine our consideration to the case �
=0.5 only for which �cª�c0=2. Indeed, first, this value of
the solid composition � determines precisely the actual
boundaries, external and internal ones, of the instability re-
gions to be analyzed. Second, as follows directly from ex-
pressions �23� and �24�, by the transformations

�new = �old
�c

�c0
, �new = �old

�c

�c0
�27�

the case of ��0.5 is reduced immediately to the given one.
Naturally the dependence of the system characteristics on the
solid composition � endows the growth instabilities with
nontrivial properties. In particular, in some sense “optimal”
conditions for the onset of instability can match the solid
composition deviating substantially from �=0.5, which in
turn is able to cause a system instability with respect to spa-
tially nonuniform perturbations. This question, however, is
beyond the scope of the present paper. Third, in the math-
ematical expressions to be obtained below the quantity �c0
will be kept instead of being replaced by its numerical value,
so using transformations �27� the general expressions can be
reconstructed immediately.

The solution of the system �23� and �24� implicitly deter-
mines the critical value gc�� ,� ,�� of the species diffusion
flux. Thereby it describes the boundary of the instability re-
gion in the complete space of the system parameters
	g ,� ,� ,�
. Projecting this region onto various planes makes
it possible to regard the instability boundary as some curve
�or surface� dividing a given plane into two domains, where
the instability can arise in principle for a given values of the
corresponding parameters or cannot do it at all. Below in this
section we will consider in detail this projection onto the
plane 	� ,�
 for a fixed value of the parameter � with the
main attention paid to the limit ��1.

It is worthwhile to underline once more that the parameter
� primarily quantifies the effect of the difference in the so-
lution energies of the species, although its specific value de-
pends also on the difference in their interaction potentials. So
the parameters � and � complementarily describe the effect
of system asymmetry on the crystal growth.

B. Two instability mechanisms

Possible roots 	�c
 of Eq. �23� specify the eigenvalues
determining the critical value of the diffusion flux gc via
expression �24�. The instability boundary is the locus where
the potentials � and � take such values that the left-hand side
of Eq. �23� gets its maximum at these roots. The solid non-
ideality and the system asymmetry are responsible for the
terms in this equation exhibiting different behavior. The term
proportional to � is an increasing function of �, whereas the
term proportional to � comprises increasing and decreasing
branches. It is the mathematical reflection of different insta-
bility mechanisms caused by the solid nonideality and the
system asymmetry.
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The asymmetry effect becomes crucial when the left-hand
side of Eq. �23� changes its behavior as a function of �. It
converts from a function monotonically increasing from 0 to
2� when � runs from 0 to � �curve 1 in Fig. 2� to one
possessing a maximum �m attained at a certain internal point
0��m�� �curve 2 in Fig. 2�. For 0����m it grows from 0
to �m�2� and then drops down to 2� on the interval �m
����. The asymptotics of the left-hand side of Eq. �23� as
�→� demonstrates directly that it is the case when

�� − �

� + �
��2� 1. �28�

In fact, if inequality �28� holds the asymptotics of the left-
hand side of Eq. �23� is a decreasing function of � and thus
the point 0��m�� does exist. Exactly in this case the in-
stability can arise even the nonideality potential is less than
its threshold, ���c0 provided the maximum �m�2�c0 due
to the effect of the system asymmetry. For the latter to be the
case the inequality ��1 is necessary as follows from con-
dition �28�. For ��1 the system asymmetry depresses the
instability onset as it is illustrated in Fig. 2 by curve 3.

Before passing to a detailed analysis of the instability do-
main we present a fairly simple way to construct the insta-
bility boundary in the plane 	� ,�
 for a fixed value of �. It
applies to the fact that the given system admits two scenarios
of the onset of instability. One caused by the solid nonideal-
ity matches the eigenvalues �ei�→� with the diffusion flux
g→�. In this case the solution of the general eigenvalue
equation �18� can be written as

�2ei2� = g� �
�c0

− 1� for g → � , �29�

so the instability arises when the nonideality parameter ex-
ceeds its critical value, ���c0, because ���2ei2�. The other
is characterized by the bounded variations of the eigenvalues
�ei� as the diffusion flux goes to infinity. Under this condi-
tion we can analyze directly the eigenvalue problem in the
limit g→� setting the left-hand side of Eq. �18� equal to
zero and thus reducing it actually to a quadratic equation.

Omitting simple arithmetical manipulations the result is

�ei� =
1

4��c0 − ��
�� � ��2 − 16�c0��c0 − ��� , �30�

where

�ª �� +
1

�
�� + �� −

1

�
�� − 2�� +

1

�
��c0. �31�

For ���c0 one of these roots corresponds to unstable pertur-
bations, nevertheless, the perturbations matching the eigen-
values given by expression �29� are dominant due to large
values of their increments. However, when the solid nonide-
ality is not to high, i.e., ���c0, the latter perturbations turn
out to be stable and the growth instability is caused by the
system asymmetry. Indeed, the instability boundary with �
=�� /4 meets the condition

� � 0 and �2 = 8�c0��c0 − �� . �32�

By virtue of Eq. �32� such instability can arise when the
parameters � and ��1 reflecting the system asymmetry
meet the inequality

�� �c
+ =
�2 + 1

�2 − 1
�2�c0 − �� +

2�2�

�2 − 1
��c0��c0 − �� . �33�

When ��1 the system asymmetry suppresses the instability
as noted above in Fig. 2. The curve B�+ on the plane 	� ,�

specified by the dependence �c

+��� is presented in Fig. 3 for
several values of the parameter �. Roughly speaking B�+ is
the boundary of the instability domain for ���c0.

It should be underlined that the present analysis was
based on the assumption that the instability has to arise for
large values of the species diffusion flux if it can develop in
principle for given values of the other system parameters. It
is true when the growth instability is caused by the solid
nonideality. However, for the instability induced by the sys-
tem asymmetry the situation is more intricate. Rigorously
speaking, in the latter case at the real instability boundary B�
the species diffusion flux g takes a certain finite value gc
�� and in a narrow boundary layer inside the instability

LH
S

of
E

q.
(2

3)

FIG. 2. Left-hand side �LHS� of Eq. �23� as a function of the
variable �. Curve 1 depicts this dependence when the system asym-
metry cannot affect the onset of instability crucially �����, curve 2
exhibits the case where the asymmetry effect is pronounced ��
���. Curve 3 demonstrates the fact that the system asymmetry
depresses the onset of instability when ��� and ��1.

FIG. 3. �Color online� The instability boundary B�
+ for several

values of the parameter � including the limit value �=�. The used
criterion of instability is Re ��0 for g→�.
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region the diffusion flux must belong to a finite interval, gc
�g�gc

+��. Nevertheless, as will be seen below, this fea-
ture is valid only for ��1. So as stems from expression �33�
for ��1 the boundary of the growth instability caused by
the system asymmetry is approximated by the line

� = 2�c0 − � �34�

to the leading order in 1 /�.

IV. STRUCTURE OF THE INSTABILITY DOMAIN

Based on the analysis of the eigenvalue equation �23� for
��1 we can single out five characteristic regions of the
system instability on the plane 	� ,�
 shown in Fig. 4. Let us
consider them individually assuming ��1 to hold.

A. Instability domain D�

The volumetric domain D� matches actually the growth
instability studied in our previous paper �11�. It is bounded
by the vertical line B�= 	� ,� :�=�c0=2
, by the layer L�,
and the � axis. The layer L� is a certain neighborhood of the
line �=2�c0−� whose thickness is about Wc�1 /�. In do-
main D� condition �28� is strongly violated, i.e.,

�� − �

� + �
��2� 1. �35�

So the left-hand side of Eq. �23� is a monotonically increas-
ing function of �. Besides, for any point of the domain D�
the distance between it and the line �=2�c0−�, i.e., actually
between it and the layer L�, can be regarded as a large value
in comparison with the quantity 1 /�. The latter statement, as
can be shown directly, causes the solution of Eq. �23� to meet
the inequality �c�1. Thereby the former term on the left-
hand side of Eq. �23� can be taken in the limit ��→�. Also
the corresponding term in expression �24� can be ignored.
Under these conditions Eq. �23� is reduced to a quadratic

equation with respect to �, yielding us immediately its solu-
tion in the form

�c =
�

�2
F�r�� . �36�

Here, by definition, the function F�r�� is determined by the
expression

F�x� =
1

2�1 − x�
�2x − 1 + �1 + 4x�1 − x��; �37�

its argument is

r� =
2�c0 − � − �

� − �
 1 −

2

�� − ��
�� − �c0� . �38�

The inequality �c0�� is assumed to hold, thus 0�r��1.
Then the critical value gc of the dimensionless diffusion flux
is

gc	D�
 =
�2�c0

�� − ��
F2�r���F�r�� + 1�

r�
�39�

by virtue of Eq. �24�.
Near the threshold of the nonideality coefficient, i.e., in

the vicinity of the boundary B�, where

0� � − �c0� � − � , �40�

one has 1−r��1. In this case function �37� is approximated
as F�r���1 / �1−r�� and expression �39� is reduced to

gc	D��B�
 �
�2�c0�� − ��2

8�� − �c0�3 , �41�

whence it follows, in particular, that the critical value of
diffusion flux diverges as ��−�c0�−3 for �→�c0+0, being in
agreement with the results of paper �11�.

When the analyzed point 	� ,�
 is located in a close prox-
imity to the layer L�, i.e., for

1

�
� 2�c0 − � − �� � − � �42�

one has r��1 and F�r���2r�. In this case formula �39� is
simplified as

gc	D��L�
 �
4�2�c0�2�c0 − � − ��

�� − ��2 . �43�

We remind that in expression �43� the difference �2�c−�
−�� cannot become too small according to inequality �42�.
The behavior of the critical diffusion flux for points coming
close to the line �=2�c0−� is considered below.

B. Instability domain D0-1

The other volumetric domain D0-1 of system instability is
formally the half plane bounded from below by the layer
composition L��L�, i.e., by a neighborhood of the line �
=2�c0−� with thickness Wc�1 /� �Fig. 4�. It comprises all
the points 	� ,�
 such that

FIG. 4. The structure of the instability region as a whole on the
plane 	� ,�
 for a fixed value of the parameter ��1. It comprises
five regions distinguishable in properties: two volumetric domains
D� and D0-1, one intermediate layer L� between them and one
boundary layer L� whose thickness Wc�1 /��1, and, finally, a
double criticality neighborhood C of the point 	�c0 ,�c0��c0
.
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� + � − 2�c0�
1

�
. �44�

In this region the solution �c of Eq. �23� turns out to be much
less than unity, �c�1. As can be verified directly, the latter
inequality enables us to ignore both the second terms on the
left-hand side of Eq. �23� and inside the square brackets in
Eq. �24�. The appearance of these terms is due to the channel
0-2 of the precipitation reactions �1�. Therefore in the do-
main D0-1 the contribution of the channel 0-2 is of minor
importance and the growth instability is caused by the chan-
nel 0-1 individually.

Using this simplification the eigenvalue equation �23�
again can be reduced to a quadratic equation with the solu-
tion

�c =
1

�2�
F�r01� , �45�

where, by definition, the argument r01 is the value

r01 =
2�c0

� + �
�46�

and meets the inequality 1−r01�1 /�.
The corresponding expression for the critical value of the

species diffusion flux is

gc	D0-1
 =
1

�2F2�r01��F�r01� + 1� . �47�

In particular, near the domain boundary L��L�, i.e., for

1

�
� � + � − 2�c0� 1, �48�

where 1−r01�1 and the function F�r01��1 / �1−r01� expres-
sion �47� converts into

gc	D0-1�L��L�
 �
8�c0

3

�2�� + � − 2�c0�3 . �49�

It should be pointed out that expression �49� does not de-
scribe a real singularity in the diffusion flux threshold. In
fact, the difference

�ª � + � − 2�c0 �50�

is bounded from below in the domain D0-1, namely, �
�1 /� and the limit �→ +0 cannot be implemented in it.

By virtue of expression �47� in the domain D0-1 the dif-
fusion flux threshold gc practically does not depend on the
particular value of the difference ��−�� because of the mi-
nor effect of channel 0-2. The situation changes dramatically
when the analyzed point 	� ,�
 enters the boundary of this
domain, being the subject of the following subsections.

C. Intermediate layer L�

The instability domains D� and D0-1 are joined to each
other via the layer L� whose points are located near the line
�+�=2�c0 and meet the inequality ��� �see Fig. 5�. So the
left-hand side of the eigenvalue equation �23� is a monoto-

nously increasing function of � and the solution of this equa-
tion �c decreases as the potential � increases for a fixed value
of �. The results obtained in the two previous subsections
show us that the quantity �c, first, drops from very large
values up to �c�1 as the analyzed point 	� ,�
 goes from the
instability boundary B� to the layer L�. Then, just after the
point crossing the layer L�, the quantity �c takes values about
�c�1 and drops down to zero as the analyzed point goes
away from it. In fact, on one hand, by virtue of Eq. �36�
when the analyzed point 	� ,�
 tend to the layer L� on the
side of the domain D� and inequality �42� holds we have

�c =
�2��2�c0 − � − ��

� − �
.

On the other hand, for the point 	� ,�
 located near the layer
L� on the side of the domain D0-1 where the inequality �48�
holds, the solution �c of the eigenvalue equation �23� is ap-
proximated as

�c =
�2�c0

��� + � − 2�c0�

by virtue of Eq. �45�. The “boundaries” of the layer L� meet
the estimate ���+�−2�c0��1, which justifies the statement
mentioned above. So inside the layer L� the quantity �c has
to change in a region where �c�1.

The expression obtained below for the critical value of the
diffusion flux gc is valid, however, for a wider region than
the layer L� itself due to the adopted assumption ��1.
Namely, in this subsection we consider the region for which

�� + � − 2�c0�� 1, �51�

thereby the two inequalities

�c�� 1 and
�c

�
� 1 �52�

hold simultaneously. This region comprises the layer L� as
well as the neighboring parts of the domains D� and D0-1. So
the expression for the diffusion flux threshold valid in it
really specifies the crossover between the domains D� and
D0-1.

Under condition �52� the former term on the left-hand
side of Eq. �23� can be approximated by the asymptotics of
the function �1�x� for x→�, whereas the latter one matches

FIG. 5. The intermediate layer L� separating the instability do-
mains D� and D0-1. Zoomed-in view.

DIFFERENT ROUTES TOWARDS OSCILLATORY ZONING … PHYSICAL REVIEW E 78, 041606 �2008�

041606-7



the limit x→0. Therefore in this case Eq. �23� can be rewrit-
ten as

�� + ��
1

�
− �� − ��� = �2�� , �53�

where � is given by expression �50�. The solution of Eq. �53�
is of the form

�c =
1

�2�� − ��
���2�2 + 2��2 − �2� − ��� . �54�

Then the substitution of Eq. �54� into Eq. �24� yields

gc	L�
 =
2�c0��c

2

��2�2 + 2��2 − �2�
, �55�

where the function �2�x� has been also approximated using
the appropriate asymptotics. As it must be, expression �55�
converts into expressions �43� and �49� for  ���1, respec-
tively.

Figure 6 illustrates the obtained crossover of the diffusion
flux threshold. In this figure the critical value gc of the di-
mensionless diffusion flux is shown vs actually the nonide-
ality parameter � for fixed parameters �=1 and �=50. In
other words, it visualizes gc��� for the analyzed point 	� ,�

moving along the line �� shown in Fig. 5.

D. Boundary layer L�

When the potential � is less than the threshold �c0 the
solid nonideality cannot individually cause the system insta-
bility. In this case only the cumulative effect of the system
nonideality and asymmetry gives rise to the growth instabil-
ity or even the system asymmetry itself does when the po-
tential � is high enough. So for ���c0 the instability domain
D0-1 borders with the region of the stable crystal growth via
the boundary layer L� �Fig. 7�. Let us consider its properties
in detail. As for the layer L� analyzed in the previous sub-
section the given layer matches the root �c of Eq. �23� of

order unity, �c�1. However, in this case by virtue of condi-
tion �28� the potential � should exceed the nonideality pa-
rameter, ���, for the growth instability to arise. As a result
the two terms entering the left-hand side of Eq. �23� have
opposite signs and the functions �1�x�, �2�x� should be ap-
proximated to the next order in the corresponding small pa-
rameters in comparison with the case of the layer L�.
Namely, using inequalities �52� expressions �23� and �24� are
reduced to the equation

�� + ��
�

+ �� − ��� = �2�� + O� 1

�2� �56�

and the expression for the diffusion flux threshold

gc =
2�2�c0��

2

!���
, �57�

where the function !��� is introduced by the formula

!��� ª � �� + ��
�

− �� − ���� −
�2

�
� �� + ��

�2 − �� − ���2�
+ O� 1

�2� . �58�

It should be pointed out that expression �56� does not contain
a term of order �−1 and the other term of order �−2 is not
written explicitly because its effect is reduced only to a small
constant contribution to the value of �.

To explain the resulting dependence of the diffusion flux
threshold gc on the potential difference � let us refer to Fig.
8. It illustrates the value of � treated as a formal function of
� that is determined by Eq. �56� and has a minimum �m
meeting the estimate

��m = �2��2 − �2� + O� 1

�2� �59�

and attained at

FIG. 6. �Color online� The critical value of the dimensionless
diffusion flux gc vs the nonideality parameter � near the intermedi-
ate layer L�. The plot is based on the general equations �23� and
�24� using the parameters shown in inset. The straight lines visual-
ize the formal asymptotics �43� and �49� whereas the dotted line
corresponds to Eq. �55�.

FIG. 7. The boundary layer L� separating the instability domain
D0-1 and the region of the stable crystal growth. Zoomed-in view
with an additional magnifying lens showing the finite structure of
the instability boundary B�.
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�m =�� + �

� − �
+ O� 1

�2� . �60�

It matches the critical value of the species diffusion flux

gm =
�c0�

2

�
�� + �

� − �
� �61�

written in the leading order of 1 /�.
If the potential difference �=�+�−2�c0 is less than �m

there is no solution of Eq. �56� �i.e., of Eq. �23�� and the
crystal growth is stable. When ���m Eq. �56� admits two
solutions written again in the leading order of 1 /� as

�c
− = �2�� + ����� + ��2�2 − 2��2 − �2��−1 �62�

and

�c
+ =

1
�2�� − ��

��� + ��2�2 − 2��2 − �2�� . �63�

Solution �62� matches the decreasing branch of the depen-
dence ���� �Fig. 8� and describes the lower boundary of the

diffusion flux threshold gc��� obeying the estimate

gm

gc���
� �1 +

�2

2�
��2 − �m

2 ��� + ��2 − �m
2

�m
�2

. �64�

This branch actually specifies the minimal value �c1�� ,�� of
the nonideality parameter � necessary for the growth insta-
bility to arise for given values of the parameters � and �,
namely, by virtue of Eq. �59�

�c1 � 2�c0 − � +
2�2

�
�� − �c0. �65�

As it must be, expression �64� converts into expression �49�
for ���1 describing the behavior of the diffusion flux
threshold in the instability domain D0-1 near the boundary
layer L�.

Solution �63� describes the upper boundary of the insta-
bility region gc

+��� which, however, exists only within a
rather narrow interval of the potential difference �, i.e., when
�m����m

+ �Fig. 8�. The parameter �m
+ and the correspond-

ing value �m
+ match the point where the function !���

changes its sign passing through zero. Exactly at this point
the upper branch gc

+��� of the diffusion flux threshold goes to
infinity and for ���m

+ , i.e., for ���m
+ it does not exist. In

this case the values of the species diffusion flux correspond-
ing to the instability onset are bounded only from below by
the threshold gc���. According to expressions �56� and �57�
the difference between �m and �m

+ is a value of the first order
in the parameter 1 /�, namely,

�m
+ − �m =

�2�

��� − ��
, �66�

and as a result the corresponding difference of the param-
eters is

��m ª �m
+ − �m =

�2�2

�3��2 − �2
. �67�

The obtained expression demonstrates the fact that this dif-
ference specifying the thickness of the region where the dif-
fusion flux threshold exhibits complex behavior is extremely
narrow �Fig. 8�. It is of the third order in the small parameter
1 /� and can be ignored. In this case only the first term in
expansion �58� should be taken into account thus only branch
�59� exists. So by virtue of Eq. �64� the diffusion flux thresh-
old in the layer L� as well as in its small neighborhood
meeting the interval �m���1 is approximated by the ex-
pression

gc��� �
16�c0

3

��2 − �m
2 �� + ��2 − �m

2 �2
�68�

showing some formal singularity when �→�m+0.
Finalizing this subsection let us discuss the behavior of

the instability boundary B� depending on the parameter �
including its relatively small values. It should be reminded
that previously we considered two curves on the plane 	� ,�
,
the instability boundary B�= 	�c���
 itself and the curve
B�+ = 	�c

+���
. The former singles out the points on this plane

FIG. 8. Illustration of the mechanism responsible for the com-
plex behavior of the critical diffusion flux in the boundary layer L�
�upper fragment� and the resulting gc��� dependence �lower frag-
ments�. The right-hand fragment depicts this dependence in zoom,
making it evident that in the region ��c1 ,�c2� the growth rate should
belong to a bounded interval for the instability to arise. In plotting
the potential difference � as a formal function of the variable �
determined by Eq. �56� and the function !��� �see Eq. �57�� vs the
variable � the values �=1.5, �=2.5, and �=10 were used as well as
the original functions �1�x� and �2�x� �expression �25�� rather than
their approximations were applied to take into account not only the
leading terms but also all the other small contributions.
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where the crystal growth can become unstable for some val-
ues of the species diffusion flux. The latter is the boundary of
the growth instability for vary large values of the diffusion
flux, g→�.

It can be demonstrated analyzing directly the general ei-
genvalue equation �23� and the expression �24� for the criti-
cal diffusion flux gc that the terminal points of the curves B�
and B�+ at �=0 and �=�c0 coincide with each other for a
given value of �. So by virtue of expression �33� their coor-
dinates are specified by the following expressions:

�0 = 2�c0
�2 + �2� + 1

�2 − 1
for � = 0, �69�

�c0 = �c0
�2 + 1

�2 − 1
for � = �c0. �70�

As it must, the � coordinates of both the points have a sin-
gularity as �→1 because in this limit the growth is stable for
���c0.

For the intermediate points 0����c0 the curves B�, B�+
deviate from each other. To evaluate this difference Fig. 9
plots the difference �c

+−�c vs the potential � for several
values of �. As seen in Fig. 9 the curves B� and B�+ practi-
cally coincide with each other except for the values of �
coming too close to its threshold �=1. Thereby expression
�33� gives a fairly fine approximation of the instability
boundary B� for such values of �.

E. Double critical point and its neighborhood C

The boundaries B� and B� of the instability region meet at
the point 	�c0 ,�c0
 that can be referred to as a double critical
point because its coordinates are the threshold of the nonide-
ality parameter and the threshold of the asymmetry potential
exceeding which the system asymmetry changes the instabil-
ity property substantially �see Fig. 10�. The latter implies the
fact that the asymmetry causes the instability onset in the
system being stable before the potential exceeds the thresh-
old, ���c0, and �c0 is the minimal value possessing this
property among all the possible values of the solid composi-
tion � and the nonideality parameter �. Therefore in calcu-
lating the value of �c0 we can set �=�c0.

The critical region C is a certain neighborhood of the
point 	�c0 ,�c0
 where the layers L� and L� overlap with

each other. So it should exhibit some crossover between the
properties of these layers. According to the results to be ob-
tained in the region C the potential difference �−� is rather
small so not only the inequality �c��1 but also �c /��1.
Keeping in mind the general condition �28� which is neces-
sary for the system asymmetry to affect essentially the insta-
bility onset, we describe the region C with two small param-
eters u�1 and v�1 introduced as follows:

�� − �� =
� + �

�2 �1 + u� ,

�� − �c0� =
� + �

2�2�2
v . �71�

Then for the variable "ª� /��1 regarded as a small value
the eigenvalue equation �23� is reduced to

v = − xu + x3 �72�

and expression �24� for the diffusion flux threshold takes the
form

gc	C
 =
4�2�4

�� + ��
1

x2�x�2 − u�
. �73�

As it must, when u�0 the instability boundary is specified
by the equality v=0 ��=�c0� and the diffusion flux threshold
gc→� as v→ +0. For u�0 the system changes the behav-
ior.

The eigenvalue equation �72� relating the variables u and
v at the point x=�u /3 where its right-hand side attains the
minimum specifies the instability boundary B�, namely,

v = −
2

3�3
u3/2 �74a�

or returning to the variables � and �

� − �c0

�c0
= −

�

6�3
�� − �c0

�c0
�3/2

. �74b�

As should be expected, at the boundary B� the diffusion flux
threshold takes a finite value equal to

FIG. 9. The difference in the instability boundaries B�
+ and B�

for several values of the parameter �.

FIG. 10. Structure of the instability region in a close proximity
to the double critical point 	�c0 ,�c0
.
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gc	C�B�
 = 6�6�� �c0

� − �c0
�3/2

. �75�

Naturally, the diffusion flux threshold gc diverges as the
asymmetry potential �→�c0+0.

Near the boundary B� the values of the diffusion flux
causing the instability onset are bounded from below and
above. The locus B�+ where the upper boundary goes to in-
finity is specified by the singularity point of function �73�,
i.e., x=u /�2. This value via equality �72� gives us the rela-
tionship between the potentials � and � at the curve B�+,

v = −
1
�2

u2 �76a�

or

� − �c0

�c0
= −
�2

16
�� − �c0

�c0
�2

. �76b�

The expressions obtained here hold for u ,v�1, so the char-
acteristic size of the region of double criticality is about Rc
�1 /�2.

V. REGIMES OF INSTABILITY DYNAMICS

The present section is devoted to a qualitative analysis of
the system dynamics. For the sake of simplicity we ignore
difference in the species kinetic coefficients setting D1=D2
=D and 
1=
2.

At first, let us consider perturbations of the species distri-
bution �Ci�z , t� induced by small variations ���t� in the sur-
face composition on time scales about . Actually 1 / is the
perturbation increment analyzed in the previous section.
Change in the surface composition ��t� affects directly the
species attachment rate caused by the growth process, which,
in turn, gives rise to variations in the species concentration
near the crystal surface �Ci

s. These boundary variations in the
species concentration spread into the solution bulk, which is
responsible for the formation of spatial perturbations in the
species distribution schematically shown in Fig. 11. The
characteristic spatial scale of these perturbations can be esti-
mated as h��D�1/2.

Within a qualitative approximation mass conservation for
such perturbations reads

−
h�Ci

s


� ��ri�Ci

s,��� �77�

or, by virtue of Eq. �12�,

−
h

�Ci

s �
a

i
�Ci

s +
aCi,st

i
#i�� , �78�

where the quantities �for i=1,2�

#i��st� = − �d ln i���
d�

�
�=�st

�79�

have been introduced and by virtue of Eq. �13�

#1 = � + �, #2 = � − � . �80�

Expression �78� enables us to single out two limit cases. The
first one which will be referred to as the growth regime of
constant growth rate matches rather slow variations of the
crystal composition �, and the species concentration Ci,
namely, the condition �i�h /a� or, what is the same,

 �
Di

2

a2 . �81�

In this case Eq. �78� yields

�Ci
s � − Ci,st

s #i�� �82�

and thus, via Eq. �77�,

��ri�Ci
s,��� � �Di

2

a2 �1/2

ri,st� ri,st. �83�

We note that the factor #i�� has been omitted in estimate
�83� because the typical values of #i under consideration are
of order unity as well as variations of the solid composition
� during the growth dynamics are about unity. Thereby for
slow variations of the crystal composition � the induced per-
turbations in the species distribution Ci�z , t� are in quasiequi-
librium. In other words, the boundary value Ci

s of the species
concentration changes in time with � in such a manner that
the boundary value of the diffusion flux, the species attach-
ment rate ri, be practically equal to the inflow of the corre-
sponding species at distant points. In particular, exactly such
variations are described by expression �82� being lineariza-
tion of the condition

aCi
s

i���
= ri � const. �84�

The second limit case, which will be called the growth re-
gime of constant surface concentration is related to rather
fast variations in the crystal composition �, when their time
scale  meets the inequality �i�h /a� or

 �
Di

2

a2 . �85�

In this case the induced variations in the surface concentra-
tion Ci

s of species i are rather small in comparison with that
could be expected in the previous limit case,

FIG. 11. Perturbation of the species distribution in the aqueous
solution induced by variations in the surface concentration Ci

s on
time scales about . Schematic illustration.
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�Ci
s � − � a2

Di
2�1/2

#iCi,st
s �� � #iCi,st

s �� . �86�

Therefore at the first approximation the fast dynamics of the
species distribution and the crystal composition meets the
equalities

Ci
s � const and �ri � aCi

s�� 1

i���
� . �87�

In this consideration the variations of the crystal compo-
sition ��t� were treated to be given beforehand. In order to
draw some conclusions about the growth dynamics as a be-
havior of an autonomous system it is necessary to discuss
how the induced variations of the attachment rates r1 and r2
affect, in their turn, the crystal composition �. This effect is
described by the governing equation �15�.

As was discussed in the previous section, when the non-
ideality potential exceeds the critical value, ���c0 the per-
turbation increment 1 /→� as the species diffusion flux
goes to infinity also. So it is natural to expect that for the
developed instability the regime of constant surface concen-
tration takes place with respect to both the species compo-
nents. Then keeping in mind expressions �87� and applying
to Eq. �15� governing the dynamics of crystal composition
we can draw the velocity field of the system motion on the
phase plane 	C1

s /C2
s ,�
 as shown in Fig. 12. The curve

C1
s

C2
s =

�

�1 − ��
1���
2���

�
�

�1 − ��
e−2�� �88�

divides this phase plane into parts with the opposite direc-
tions of the velocity field. In obtaining Eq. �88� expressions
�13� have been used. As it should be the stationary values of
the species concentrations Ci,st

s and the crystal composition
�st �see expressions �84�� meet equality �88�. Figure 12
clearly demonstrates that under such conditions its increasing
branches are stable whereas a decreasing branch �if it exists�
is unstable. So the limit circle at a rough approximation
should have the form shown in Fig. 12. Exactly this limit

was analyzed in our previous paper �11� and corresponds to
the domain D� of the instability region.

If the nonideality parameter � is less than the critical
value, ���c0=2 the solid nonideality cannot itself induce
the growth instability. In this case the instability develop-
ment is governed by the system asymmetry, which is re-
flected in properties of the instability domain D0-1. In par-
ticular, for the system with such parameters only the channel
0-1 of the precipitation reactions �1� plays an active role, the
channel 0-2 is characterized by the equilibrium value of the
species diffusion flux at the crystal surface. In this case it is
quite natural to assume that the perturbation increment 1 /
meets the inequality

D2

a2 � �
D1

a2 . �89�

Therefore, on one hand, with respect to species 2 such a
process can be classified within the regime of constant
growth rate. On the other hand, with respect to species 1 the
regime of constant surface concentration takes place. Actu-
ally it is the case for the points of the domain D0-1. To de-
scribe the corresponding dynamics of the crystal composition
� we can fix the surface concentration C1

s and set the species
attachment rate r2= �1−�st�G. Then we draw a similar veloc-
ity field of the system motion on the phase space 	C1

s ,�

shown again in the same Fig. 12. Its pattern is identical to
one discussed above except for the fact that the y axis of this
phase plane has now another meaning, it presents the surface
concentration of species 1. As follows from Eq. �15� and
expressions �13� the curve

C1
s =

�

�1 − ��
1���

�stG

a
�

�

�1 − ��
e−��+��� �90�

separates the regions on the phase plane 	C1
s ,�
 with the

opposite directions of the velocity field. This curve looks like
the previous one, Eq. �88�, within the replacement 2�→�
+�. So again the instability condition for the potentials of
the species interactions take the form �+��2�c0, being in
agreement with the results obtained before. As previously the
increasing branches of curve �90� are stable whereas the de-
creasing one is unstable and the system transition between
them as well as the transition from the unstable stationary
point 	C1,st

s ,�st
 to one of them proceeds within the regime of
constant surface concentration with respect to species 1. The
rough approximation of the limit circle again has the same
form.

In the part of the domain D0-1 where ���c0 both of the
instability scenarios can be implemented. So depending on
the species diffusion flux either the phase plane 	C1

s ,�
 or the
plane 	C1

s /C2
s ,�
 can give an appropriate representation of

the system dynamics.

VI. NONLINEAR DYNAMICS OF SYSTEM INSTABILITY:
DOMAIN D�

This section presents numerical results for the system dy-
namics when the growth instability arise in a subdomain D�
of the domain D0-1, where the nonideality parameter � is less

FIG. 12. Phase planes demonstrating the mechanism of the in-
stability onset caused by the solid nonideality �I� and the system
asymmetry �II�.
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than its threshold, i.e., ���c0. So it is the system asymmetry
that causes the instability.

To model numerically the system dynamics the governing
equations �9�–�11� and �15� were converted into dimension-
less form. Namely, first, the time t and the spatial coordinate
z are measured in units,

* =
�D1D2g

2

a2 , z* =
�D1D2g

a
, �91�

respectively, i.e., the dimensionless time and spatial coordi-
nates are introduced as tnew= told /* and znew=zold /z*. Sec-
ond, the species concentrations and the diffusion flux are
replaces with their dimensionless analogies, Ci,new
=Ci,old /C* and Gi,new=Gi,old /G*, where

C* =
1

�D1D2ga
, G* =

1
�D1D2g

2
. �92�

In this way the original model is rewritten in the form

�Ci

�t
= �i

�2Ci

�z2 , �93�

d�

dt
= ��1 − ���1���C1

s − ��2���C2
s� , �94�

with Eq. �93� being subject to the boundary condition at z
=0,

�i� �Ci

�z
�

z=0
= �i���Ci

s, �95�

and the condition at distant points, i.e., at the formal external
boundary Lnew=Lold /z*,

Gi = �i� �Ci

�z
�

z=L
. �96�

Here the dimensionless species diffusivities are

�1 =
1

�2
=�D1

D2
�97�

and the dimensionless rates of the atom attachment to the
growing crystal are

�1��� = $1 exp	�� − ��1 − ��
 ,

�2��� = $2 exp	− ��1 − �� − ����
 �98�

with

$1 =
1

$2
= �
1


2
�1/2

exp�−
1

2
�� . �99�

It should be noted that the previously used parameter �� is
related to the introduced kinetic coefficients as

$2

$1
= ��2

�1
�1/2

e���
2 . �100�

So the ratio �$1 /$2�e� is actually the main small parameter
of the given model because for aqueous solutions the rela-
tionship D1�D2 is typically fulfilled.

The system of equations �93�–�96� was solved numeri-
cally using the Crank-Nicholson scheme for the diffusion
equation �93� and the midpoint method for Eq. �94�. To ex-
emplify the basic characteristics of the instability dynamics
in the region D� the system parameter were set equal to �
=1.5, �=3.5, and ��=10 as well as �1=�2=1. Then expres-
sion �100� gave us the values of $1 and $2. The time and
spatial steps in the simulation routine were 0.01; decreasing
the steps twice did not affect the obtained results. The time
variations in the species distribution induced by the devel-
oped instability turned out to be located near the crystal
boundary within a layer of thickness about 15–20 spatial
units. So the external boundary of the system was placed at
L=100, where the species concentrations C1

� and C2
� were

fixed in such a way that the total diffusion flux and the solid
composition take the values Gst=G1

st+G2
st=10 and �st=0.5

under the steady state conditions. The total simulation time
was 10 000 time units.

Below we will present the obtained results. Figure 13 vi-
sualizes evolution of the species distribution in the aqueous
solution bulk near the crystal surface. Only the distribution
of species 1 is shown because it, first, exemplifies similar
effects for species 2 also and, second, plays the leading role
in the instability onset. To elucidate the dynamics of the spe-
cies distribution the time dependent component �C1�t ,z� is
singled out from the total distribution function,

C1�t,z� = �C1�t,z� + �C1
s� +

�G1�
�1

z ,

and depicted in Fig. 13. The other terms in this expression
are the steady state components of the species distribution.
As seen in this figure the time variations of species distribu-
tion are located near the crystal surface z=0 in its neighbor-

FIG. 13. �Color online� The time dependent component �C1�t ,z�
of the species 1 distribution in the aqueous solution bulk near the
crystal surface, z=0, for several time slices within one period of the
oscillations. Result of numerical simulation. The shown time origin
t=0 is placed at an arbitrary chosen point that corresponds to the
instability becoming well developed.
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hood of thickness about LC�15 for the chosen system pa-
rameters. So the size of the system L=100 used in the
numerical simulations is fairly large to enable one to regard
the external boundary z=L as infinitely distant points. In any
case in numerical simulations the size of the system should
be specified that the inequality LC�L to hold.

Figure 13 demonstrates the fact that a simple model of the
boundary layer similar to the one shown in Fig. 11 can be
used only for a qualitative analysis. The actual spatial form
of �C1�t ,z� can possess a remarkable extremum attained at a
certain internal point of the crystal neighborhood, which
must be taken into account in constructing an appropriate
boundary layer approximation.

Nevertheless, in spite of a rather rough model for the
boundary layer used in Sec. V the instability scenarios de-
scribed there is justified by the results of numerical simula-
tion. The found dynamics of the solid composition ��t� and
the surface species concentrations Ci

s�t� exhibit relaxation os-
cillations with clearly visible fast and slow stages of system
motion �Fig. 14�. So the results obtained for the given set of
parameters do describe an essentially nonlinear regime of the
growth instability. The phase portrait of the system oscilla-
tions on the plane 	� ,C2

s
 demonstrates the fact that the re-
gime of constant growth rate really takes place with respect
to the species 2. Indeed the image of the oscillation limit
circle on this phase plane is located in the vicinity of the
curve N2��� obtained by setting the right-hand side of the
boundary condition �95� equal to the diffusion flux of species
2 under the stationary conditions, i.e.,

�2���C2
s = �1 − �st�G

and thus

N2��� =
�1 − �st�Ge�

$2
exp	− �� − ���
 . �101�

With respect to species 1 the regime of constant surface
concentration could be expected to be the case. The image of

the oscillation limit circle on the plane 	� ,C1
s
 �Fig. 14� jus-

tifies this expectation at least within semiquantitative consid-
eration. Figure 14 depicts the obtained limit circle together
with the nullcline N1��� constructed by setting the right-hand
side of the governing equation �94� equal to zero, fixing the
surface concentration C1

s and assuming the attachment rate
�2���C2

s of species 2 to meet the regime of constant diffusion
flux. In this the expression

N1��� =
�1 − �st�Ge�

$1

� exp	− �� + ���

�1 − ��

�102�

has been constructed. As seen, here the fragments of the limit
circle matching the fast motion deviate substantially from the
decreasing branch of the nullcline N1��� and the fragments
of slow motion go near its increasing branches. So, roughly
speaking, it is the characteristics of the nullcline N1��� that
specify the amplitudes of time variations in the solid compo-
sition and surface species concentrations for the developed
growth instability. However, the obtained limit circle also
deviates remarkably from a simple form constructed in Fig.
12 applying directly to the notions of the standard relaxation
oscillations. The matter is that the system under consider-
ation is really not reduced to a two-variable model implying
actually the too simple boundary layer approximation shown
in Fig. 11 to hold. So the dynamics of the surface concentra-
tion C1

s�t� of species 1 contains the fragments of slow motion
as well as that of fast motion �Fig. 14�. The latter ones actu-
ally force the fast motion branches of the limit circle to de-
viate remarkably from horizontal lines on the plane 	� ,C1

s
.
This effect was also observed for the growth instability
caused by the solid nonideality �11�.

Finalizing the present section we underline once more that
there is a widely used approach to constructing the limit
circle of oscillations in such a system, i.e., the “boundary
reaction—diffusion” systems treating the governing equation
�94� �or its original version �15�� for the solid composition in
a too simple way. It sets the right-hand side of this equation
equal to zero and relates the system portrait on the plane
	� , �C1

s /C2
s�
 to the nullcline N12��� determined by the ex-

pression

N12��� =
�

�1 − ��
�2���
�1���

=
$2e−�

$1

� exp	��1 − 2��

�1 − ��

.

�103�

For the growth instability caused by the solid nonideality the
nullcline N12��� possesses a decreasing unstable branch �see,
e.g., Fig. 12�. In this case the limit cycle constructed follow-
ing the classical ideas of the standard relaxation oscillations
is justified at least within a quasiqualitative analysis �11�.
However, if the growth instability is induced by the system
asymmetry, such an approach is not justified at all, the cor-
responding nullcline N12��� is a monotonous curve and the
system portrait on the plane 	� , �C1

s /C2
s�
 is just located in its

vicinity �Fig. 15�.

VII. CONCLUSION

We have analyzed oscillatory zoning, i.e., the self-
organization phenomenon arising during crystallization of

FIG. 14. �Color online� The dynamics of solid composition ��t�
and the surface species concentrations Ci

s�t� �left column� and the
corresponding phase portraits on the planes 	� ,Ci

s
 �right column�.
Result of numerical simulation. The shown time origin t=0 is
placed at an arbitrary chosen point that corresponds to the instabil-
ity becoming well developed and steady state.
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multicomponent solid from aqueous solution. It manifests
itself in self-formation of quasiperiodic spatial patterns of
solid composition from the core of a crystallite to its rim.

Keeping in mind systems like �Ba,Sr�SO4, we have pro-
posed a model for the growth of ternary-component solid
from aqueous solution. The crystallization process comprises
passive diffusion of species towards the crystal surface
through the aqueous solution bulk, their adsorption at the
crystal surface, and incorporation into the crystalline lattice
at the surface atomic steps. The latter process is assumed to
limit the crystal growth, so the species adsorption-desorption
at the crystal surface is described within the quasiequilibrium
approximation. Due to a very low rate of crystallization from
aqueous solutions the growth dynamics is simulated using
the boundary-reaction-diffusion model for the species distri-
bution in the aqueous solution bulk.

The proposed model for the growth process takes into
account the solid nonideality as well as the system asymme-
try, with the latter being the characteristic feature of systems
for which oscillatory zoning was reproduced under con-
trolled conditions. It has been demonstrated that the system
asymmetry can cause the growth instability in the case when
the solid nonideality is low, i.e., the nonideality parameter is
less than its threshold, ���c0, or even if the solid solution is
ideal, �=0. Using the linear stability analysis the instability
domain is constructed in the phase space 	� ,� ,� ,g
 com-
prising the nonideality parameter �, the difference � of the
species interaction constants, the parameter � characterizing
the ratio between time scales of species incorporation into
the crystalline lattice, and the species diffusion flux �in di-
mensionless units�. The potential difference ��0 is assumed
beforehand to be non-negative because, otherwise, exchang-
ing the species indices makes it value positive. Projection of
this domain onto the plane 	� ,�
 for a fixed value of �
enables us to divide all the points on the plane 	� ,�
 into
stable and unstable ones. The latter points correspond to such
solids for which the growth instability under consideration
can arise in principle.

It has been demonstrated that there are five characteristic
regions on the plane 	� ,�
, where the growth instability ex-
hibits different properties. In particular, in the region

	� � �c;� + �� 2�c0


the growth instability is governed mainly by the solid non-
ideality and was analyzed in detail previously in Ref. �11�. In
the region

	� � �c;� + �� 2�c0


for ��1 the instability onset is governed by the system
asymmetry and, as a result, only one species plays an active
role, the diffusion flux of the other component is practically
quasiequilibrium. However, for large values of the diffusion
flux the instability dynamics again is mainly affected by the
solid nonideality. In the region

	� � �c;� + �� 2�c0


for ��1 the instability is due to the system asymmetry even
for large values of the diffusion flux. It can arise also for the
ideal solid solution.

In this case the critical value gc of the species diffusion
flux exhibits a rather complex behavior near the instability
boundary. In particular, gc remains bounded as the system
comes close to it. It has been demonstrated that the system
asymmetry can induce, in principle, the growth instability if
��1. However, if �→1 the required value of the potential
difference �c approaches to � �for a fixed value of ���c0�.
The condition that the system admits an unstable perturba-
tion with finite spatial scales for large values of the species
diffusion flux, g→�, gives a fairly precise approximation of
the boundary of the instability caused by the system asym-
metry except for values of � close to its threshold �=1.

Analyzing the limit cases of the growth dynamics two
typical regimes were singled out. One of them is the regime
of constant diffusion flux that characterizes “slow” dynamics
of species concentration and solid composition. The other
referred to as the regime of constant surface concentration
described the stage of “fast” dynamics. Oscillatory zoning
studied in our previous paper �11� corresponds to the case
when the region of constant surface concentration holds with
respect to all the species. As a result the phase portrait of the
system dynamics looks like a limit circle of relaxation oscil-
lations in the phase plane 	C1

s /C2
s ,�
. At a rough approxima-

tion it can be constructed referring to the N-like curve show-
ing the quasistationary dependence of the ratio C1

s /C2
s on �.

In the present paper the main attention is paid to the case
��1 where the nonlinear stage of the developed instability
is characterized by the regime of constant surface concentra-
tion with respect to one species and regime of constant dif-
fusion flux with respect to the other species. Now the phase
plane 	C1

s ,�
 gives the appropriate representation of the sys-
tem portrait in a similar way, including the construction of
the limit circle describing oscillatory zoning.

Numerical simulation justifies these conclusions. Besides,
the species distribution in the aqueous solution bulk found

FIG. 15. �Color online� The phase portrait of the system oscil-
lations on the plane 	� , �C1

s /C2
s�
. Results of numerical simulation.
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numerically demonstrates the fact that a rather sophisticated
model of the boundary layer should be developed to describe
oscillatory zoning adequately.

In the next step the spatial aspects of the surface proper-
ties will be taken into account by extending the present
analysis by a surface dimension. Then the possible emer-
gence of new characteristic length scales along the surface
can be checked.
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